Returns a 1-D tensor of size floor((end - start)/end) with values from the interval [start, end) taken with common difference step beginning from start. Note that non-integer step is subject to floating point rounding errors when comparing against end; to avoid inconsistency, we advise adding a small epsilon to end in such cases.

tch_arange(start = 0, end = NULL, step = 1, out = NULL,
  dtype = NULL, layout = NULL, device = NULL,
  requires_grad = FALSE)

Arguments

start

the starting value for the set of points

end

the ending value for the set of points

step

the gap between each pair of adjacent points

out

(optional) the output tensor

dtype

the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_tensor_type()). If dtype is not given, infer the data type from the other input arguments. If any of start, end, or stop are floating-point, the dtype is inferred to be the default dtype, see get_default_dtype(). Otherwise, the dtype is inferred to be torch.int64.

layout

the desired layout of returned Tensor

device

the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types

requires_grad

boolean. If autograd should record operations on the returned tensor

Examples

tch_arange(5)
#> tensor #> 0 #> 1 #> 2 #> 3 #> 4 #> [ Variable[CPUFloatType]{5} ]
tch_arange(1, 4)
#> tensor #> 1 #> 2 #> 3 #> [ Variable[CPUFloatType]{3} ]
tch_arange(1, 2.5, 0.5)
#> tensor #> 1.0000 #> 1.5000 #> 2.0000 #> [ Variable[CPUFloatType]{3} ]